Instruction Manual

MODEL 1112-VT(A) RF TUNER
(Serial No. 204 and above)

December 1972

TRADE SECRETS

The information contained in/on this document constitutes trade secrets of Microdyne Corporation and, therefore, the user of this information covenants and agrees that he/it will not, nor will he/it cause others to copy or reproduce said information, either in whole or in part, or manufacture, produce, sell or lease any product copied from or essentially based upon the information contained herein without prior written approval of Microdyne Corporation.

TABLE OF CONTENTS

Section Title Page
I GENERAL INFORMATION
1-1. Scope 1-1
1-2. Purpose and Description 1-1
II INSTALLATION
2-1. General 2-1
2-3. Unpacking and Handling 2-1
2-5. Storage 2-1
2-7. Installation 2-1
2-9. Removal 2-1
2-11. Packaging for Reshipment 2-1
III OPERATION
3-1. General 3-1
3-3. Controls and Indicators 3-1
$3-5$. Operating Procedure 3-1
$3-7$. Internal Operation 3-1
3-9. VFO Operation 3-1
3-10. Crystal Operation 3-2
3-11. External Local Oscillator Operation 3-2
$3-12$. Remote Control Operation 3-2
IV THEORY OF OPERATION
4-1. General 4-1
4-5. Circuit Theory 4-1
4-7. RF Amplifier 4-1
4-11. First Local Oscillator 4-3
4-13. Voltage Controlled Oscillator 4-3
4-15. Crystal Controlled Oscillator 4-3
4-18. External Oscillator and Oscillator Monitor 4-4
4-20. First Mixer and IF Amplifier 4-4
4-22. A3, DC Amplifier 4-4
V MAINTENANCE
5-1. General 5-1
5-3. Test Equipment 5-1
5-5. Special Cables 5-1
5-7. Performance Tests 5-2
5-9. Noise Figure 5-2
5-11. Gain 5-2
5-13. Local Oscillator Frequency 5-2continued

Table of Contents, continued
Section Title Page
V 5-15. Periodic Adjustments 5-2
5-17. Preventive Maintenance 5-3
5-20. Corrective Maintenance 5-3
5-22. Troubleshooting 5-3
5-25. Repair 5-5
5-28. Alignment 5-5
5-30. Setup 5-5
5-31. DC Amplifier 5-5
5-32. VFO Alignment 5-6
5-33. LO Multipliers Alignment 5-6
5-34. Crystal Oscillator Alignment 5-7
5-35. RF Amplifier Alignment 5-7
$5-36$. IF Amplifier Alignment 5-7
5-37. Tests 5-8
VI REPLACEMENT PARTS LIST
6-1. General 6-1
6-3. Main Chassis 6-1
6-4. A1, RF Chassis 6-1
6-5. A2, Crystal Oscillator and Multiplier 6-8
6-6. A3, DC Amplifier 6-10
VII MAINTENANCE DIAGRAMS 7-1

LIST OF ILLUSTRATIONS

Figure Title Page
3-1 Input Voltage vs. Frequency 3-4
4-1 Model 1112-VT(A) RF Tuner, Simplified Block Diagram 4-2
5-1 DC Amplifier, Component Location 5-9
7-1 Main Chassis, Schematic Diagram 7-3
7-2 A1, RF Chassis, Schematic Diagram 7-5
7-3 A2, Crystal Oscillator and Multiplier, Schematic Diagram 7-7
7-4 A3, DC Amplifier, Schematic Diagram 7-9
LIST OF TABLES
Table Title
1-1 Specifications 1-2
5-1 Required Test Equipment 5-1
5-2 Static DC Voltages 5-3
5-3 DC Amplifier DC Voltages $5-1$

SECTION I
GENERAL INFORMATION

1-1. SCOPE. This manual provides information pertaining to the installation, operation, and maintenance of the Model 1112-VT(A) RF Tuner designed and manufactured by Microdyne Corporation, Rockville, Maryland. A replacement parts list and maintenance diagrams are included herein.

1-2. PURPOSE AND DESCRIPTION

1-3. The Model 1112-VT(A) RF Tuner is designed for use in Microdyne single channel telemetry receivers. The unit functions to select, amplify, and down convert signal frequencies in the range of 215 MHz to 320 MHz , and supply a 50 MHz intermediate frequency (i-f) for further processing. Noise figures of less than 6.5 dB are obtained over the entire tuning range through the use of all solid-state components.
$1-4$. The $1112-\mathrm{VT}(\mathrm{A})$ is completely voltage tuned using voltage variable capacitance diode tuning elements which eliminate the need for electromechanical tuning components such as inductuners and large capacitors. Frequency selection is accomplished through the use of either a voltage controlled oscillator (vfo), a crystal controlled oscillator, or an external source such as a synthesizer or another receiver, and a voltage tuned rf amplifier. A single tuning potentiometer used in conjunction with a de amplifier is employed to set the operating frequency of the rf amplifier, local oscillator, and local oscillator multiplier during vfo operation. The same potentiometer adjusts the rf amplifier and local oscillator multiplier frequency during crystal controlled and external source operation. All stages are tuned in an identical manner with the voltage output of the tuning potentiometer being applied to the tuning elements via a dc amplifier to control the resonant frequency of the tuned stages. Also ganged to the tuning potentiometer is the frequency indicating mechanism. This mechanism is composed of a gear-driven, taut metal strip constructed to virtually eliminate backlash.
$1-5$. The $1112-\mathrm{VT}(\mathrm{A})$ features the additional capability of being tuned from a remote station. With this capability, the unit can be precisely tuned by a voltage input from a computer interface or remote console. Refer to Section III for details.
$1-6$. The $1112-\mathrm{VT}(\mathrm{A})$ is constructed as a complete front panel plug-in module for the parent receiver. All power and signal connections between the tuner and receiver are made automatically upon installation through a push-on coaxial connector, and a miniature ribbon-type connector. A front panel receptacle is provided for mounting the crystal adapter or oven. Also located on the front panel is the remote or local tuning mode switch.

1-7. Electrical, environmental, and mechanical specifications for the tuner are given in table 1-1.

Table 1-1. Specifications

ELECTRICAL:

Operating Modes	local or remote; switch selectable.
Frequency Range	$215-320 \mathrm{MHz}$; continuously tunable or crystal controlled.
Dynamic Range	receiver threshold to -7 dBm.
Input Impedance	operates from a 50 ohm source.
Noise Figure	6.5 dB maximum.
Image Rejection	80 dB minimum.
IF Rejection	90 dB minimum.
Spurious Rejection	60 dB minimum.
Spurious Emission	meets or exceeds MIL-STD-461A and
	MIL-STD-826A.

First LO Characteristics:
Operating Modes continuously tunable (VFO) or crystal controlled (XTAL); switch selectable. Mixer injection 50 MHz above rf input.

VFO - $\pm 0.001 \%$ per degree C.
XTAL $- \pm 0.0005 \%$ with oven $\pm 0.005 \%$ without oven.

Monitor Output

Monitor Output Level
submultiple (1/4) of mixer injection -$66.25-92.5 \mathrm{MHz}$.
$50 \mathrm{mV}(-13 \mathrm{dBm})$ into 50 ohms.
First IF Output:

Frequency
Bandwidth
ENVIRONMENTAL:
Temperature Range:
Operating
Storage
Relative Humidity

50 MHz .
4.5 MHz (standard).

Table 1-1, continued

Barometric Pressure:

Operating
Storage
MECHANICAL:
Height
Width
Depth
Weight
to 10,000 feet. to 50,000 feet.
4.5 inches.
4.0 inches.

15 inches.
approximately 4 pounds.

SECTION II
INSTALLATION

2-1. GENERAL

$2-2$. The rf tuner is shipped independently from the receiver in which it is to be installed. It is sealed in a polyethylene bag, wrapped in shock absorbing insulation, and packaged in a rugged shipping container.

2-3. UNPACKING AND HANDLING

2-4. Upon receipt of the tuner carton, cut the sealing tape and lift the package from the box. Open the bag and remove the tuner. (Do not discard the packing material if the unit is to be reshipped; see paragraph $2-11$.) Check the tuner for in-transit damage: broken connectors, dents, etc. If damaged, notify the proper authority immediately.

2-5. STORAGE

2-6. Storage conditions must be within the environmental limits specified in table 1-1.

2-7. INSTALLATION

2-8. The tuner is held in place in the receiver with a module lock and spring-actuated latch handle on the left side. To install the module, move the lock portion of the mechanism up and pull the handle marked PULL forward. Insert the tuner into the receiver slot. Return the PULL handle to its original position until the lock snaps into place.

2-9. REMOVAL

2-10. To remove the tuner from the receiver, lift the module lock up to disengage the release. Pull the handle marked PULL forward and slide the tuner out of the receiver.

2-11. PACKAGING FOR RESHIPMENT

2-12. To package the tuner for reshipment, proceed as follows:
a. Place the tuner and a quantity of desiccant into a moisture-proof polyethylene bag and seal.
b. Place the unit in a cardboard container, preferably a padded type, using enough shock absorbing material to prevent any movement within the carton.
c. Seal the carton and affix the necessary "Fragile" and "Delicate Equipment" labels.

3-1. GENERAL

$3-2$. This section provides information on the operation of the tuner only and should be used in conjunction with the overall operating procedures given in the receiver manual.

3-3. CONTROLS AND INDICATORS

3-4. Two operating controls and one indicator are included on the tuner. These are:

TUNING

REMOTE/INTERNAL

FREQUENCY MHz

This control is employed to adjust the rf amplifier, local oscillator, and multiplier in the vfo mode, and the rf amplifier and multiplier only in the crystal mode.

This switch is employed to set the operating mode. When set to INTERNAL, tuning is accomplished through the front panel TUNING control. When set to REMOTE, tuning is accomplished through the application of a tuning voltage from an external source.

This dial is employed to indicate the frequency to which the $1112-\mathrm{VT}(\mathrm{A})$ is tuned.

3-5. OPERATING PROCEDURE

3-6. The 1112-VT(A) rf tuner may be operated in either an internal control mode or a remote control mode. Operating procedures for each mode are given in paragraphs 3-7 and $3-12$, respectively.

3-7. INTERNAL OPERATION

3-8. To operate the tuner using the front panel tuning control and internal voltages, set the front panel REMOTE/INTERNAL switch to the INTERNAL position. Frequency selection in this mode is accomplished through either a voltage controlled oscillator, a crystal controlled oscillator (XTAL), or an external source such as another receiver or frequency synthesizer. Directions for operating the tuner in these modes are given in paragraphs 3-9, 3-10, and 3-11.

3-9. VFO OPERATION

a. Set the receiver 1ST LO MODE switch to VFO.
b. Adjust the TUNING control until the desired frequency mark is under the dial index.
c. Readjust the TUNING control and the receiver FINE TUNE control for a zero indication on the receiver TUNING meter.
d. Refer to the receiver instruction manual OPERATION section.

3-10. CRYSTAL OPERATION. The tuner may be operated with either a CR-52A/U crystal mounted in a Microdyne 200-070 crystal adapter assembly, or a CR-65A/U crystal mounted in a Microdyne 100-001 crystal oven assembly. In any case, the operating procedure is as follows:
a. Set the receiver 1ST LO MODE switch to XTAL.
b. Adjust the TUNING control until the desired frequency mark is under the dial index.
c. Plug an adapter and crystal or an oven and crystal into the front panel socket. The formula for determining the correct crystal frequency is given below:

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{F}_{\mathrm{r}}+50}{8}
$$

$$
\text { where: } \begin{aligned}
& \mathrm{F}_{\mathrm{c}}=\text { crystal frequency } \\
& \mathrm{F}_{\mathrm{r}}=\mathrm{rf} \text { input frequency }
\end{aligned}
$$

3-11. EXTERNAL LOCAL OSCILLATOR OPERATION. Provisions have been incorporated for driving the 1-o chain from an external signal source such as a frequency synthesizer or another receiver also equipped with an $1112-\mathrm{VT}(\mathrm{A})$. To use the capability, proceed as follows:
a. Connect the external synthesizer or other receiver to the external input on the parent receiver rear apron. If a frequency synthesizer is used, it must be capable of supplying a 66.25 to 92.5 MHz output between -13 and 0 dBm .
b. Set the receiver 1ST LO MODE switch to OFF.
c. Set the TUNING control to the desired frequency mark.
d. Set the external source to the required frequency for driving the tuner. If a second receiver is used, simply set it to the same frequency as in step c.
e. If a synthesizer is used, set for an output between -13 and 0 dBm and the correct injection frequency. This frequency is determined by the following formula:

$$
\mathrm{F}_{\mathrm{i}}=\frac{\mathrm{F}_{\mathrm{r}}+50}{4}
$$

where: $\mathrm{F}_{\mathrm{i}}=$ synthesizer input
$\mathrm{Fr}=$ received frequency

3-12. REMOTE CONTROL OPERATION

3-13. For remote control operation, a control voltage derived from a remote tuning console or computer interface is employed to tune the rf amplifier, local oscillator, and local oscillator multiplier. This voltage must range from 0 volts to -5 volts de depending on the frequency to be received. The control voltage is applied to the receiver rear apron

ACCESSORIES connector and coupled to P10-13 on the tuner. To operate the tuner in this mode, proceed as follows:
a. Set the tuner INTERNAL/REMOTE switch to REMOTE.
b. Set the receiver 1ST LO MODE switch to VFO.
c. Connect a frequency counter to the receiver first l-o monitor output.
d. Connect a power supply to the remote input on the receiver ACCESSORIES connector.
e. Determine which rf carrier frequencies are to be received during the operational mission.
f. With the carriers noted, determine what voltage input level is required to adjust the tuner to each frequency. This is accomplished as follows:

1. Monitor the input control voltage with a digital or differential voltmeter capable of indicating in millivolts.
2. Adjust the power supply for a voltage output as indicated in figure $3-1$; this is a coarse adjustment.
3. Fine tune the power supply until the counter indicates the correct submultiple of the required local oscillator frequency. The submultiple is determined by the following formula:

$$
\mathrm{F}_{\mathrm{O}}=\frac{\mathrm{Fr}_{\mathrm{r}}+50}{4} \quad \text { where: } \begin{aligned}
& \mathrm{F}_{\mathrm{O}}=\text { oscillator frequency } \\
& \mathrm{F}_{\mathrm{r}}=\mathrm{rf} \text { input frequency }
\end{aligned}
$$

This frequency should be set as accurately as possible since the control voltage is also setting the center frequency of the rf amplifier circuitry.
4. Note the voltage level required to obtain the oscillator frequency to three decimal places. If the receiver is to be operated in the afc mode, it will not be necessary to set the control voltage as would normally be required as the afc circuit has an acquisition range greater than $\pm 250 \mathrm{kHz}$. It is recommended that afc operation be utilized for remote tuner operation.
g. With the tuning voltages noted, program the computer or set the tuning console to supply those voltages on command.
h. Disconnect the power supply and connect the computer or console input in its place.
i. Refer to the receiver manual OPERATION section for additional information on other receiver control adjustments.

Figure 3-1. Input Voltage vs. Frequency

SECTION IV
THEORY OF OPERATION

4-1. GENERAL

4-2. The rf tuner functions as the receiver "front end" in order to select a single frequency in the 215 MHz to 320 MHz range for processing. The unit consists of an rf amplifier, mixer, 50 MHz i-f amplifier, and a local oscillator/multiplier chain. See figure 4-1.

4-3. An applied rf signal ranging from 215 to 320 MHz is amplified by the rf amplifier stage and coupled to the first mixer. In the mixer, the rf input is heterodyned with a signal generated by the first local oscillator to produce a 50 MHz output. This signal is then coupled to the 50 MHz i-f amplifier for further application to the receiver i-f circuitry.

4-4. The first local oscillator signal applied to the mixer may be supplied by a variable frequency oscillator (vfo), a crystal controlled oscillator, or an external generator. The signal generated by the selected local oscillator is multiplied and amplified to supply a mixer injection frequency 50 MHz above the applied rf signal.

4-5. CIRCUIT THEORY

4-6. Reference to the schematic diagrams shown in Section VII is recommended while reading the following circuit descriptions.

4-7. RF AMPLIFIER

4-8. The rf amplifier consists of Q1, Q2, and Q3. Double-tuned circuits preceding and following the amplifier stage are employed to establish the bandwidth of the amplifier as well as provide the selectivity. Tuning of the amplifier stage is accomplished using voltage variable capacitance diode tuning elements CR1 through CR8. See figure 7-2.

4-9. The rf input signal is applied through J1 and impedance matching transformer L4 to the first double-tuned circuit CR1 through CR4. The signal is then coupled to the rf amplifier which is configured as a differential amplifier driven from a constant current source. In actual operation, however, Q1 and Q3 function as a cascode amplifier with Q2 operating as a signal shunt for gain control purposes. Gain control voltage from the receiver is applied to the gate of Q3 via sensitivity adjustment R20. Since the total flow through the differential stage is held constant by Q1, any change in the current flow through Q3 caused by the biasing effects of the age voltage will be compensated for by an increased or decreased current flow through Q2. For example, if the agc voltage applied to Q3 caused the current through Q3 to decrease, the current through Q2 would increase by a corresponding amount thereby shunting a larger portion of the signal out of the signal path. This configuration and method of gain minimizes the effects of load changes on the amplifier bandpass and enhances the large signal handling capability of the tuner. The output of the amplifier is taken from the drain of Q3 and applied through the output double-tuned circuit to the mixer Q4.

Figure 4-1. Model 1112-VT(A) RF Tuner, Simplified Block Diagram
$4-10$. The double-tuned input and output stages of the amplifier are tuned by a control voltage applied to the cathode of tuning elements CR1 through CR8. This voltage is derived from either the front panel tuning potentiometer R1 or an external source via dc amplifier A3, and is employed to adjust the capacitance of the tuning elements to set the resonant frequency of the tuned circuit. CR1, CR4, CR5, and CR8 are utilized to control the resonance of the circuits and elements CR2, CR3, CR6, and CR7 are utilized to maintain the 7.5 MHz bandwidth by constantly optimizing the coupling. A more complete description of the dc amplifier is presented in paragraph 4-22.

4-11. FIRST LOCAL OSCILLATOR

4-12. The first local oscillator consists of either a voltage controlled oscillator, a crystal controlled oscillator, or an external source, and the required multiplier and buffer stages.

4-13. VOLTAGE CONTROLLED OSCILLATOR. When the vfo operating mode is selected, -15 V dc is applied through P1-19 and coupled to the oscillator circuit at A1C67. The voltage controlled oscillator is composed of Q6, in a modified Colpitts configuration, and tuning control circuit U1. Control of the oscillator frequency is accomplished by the application of the same tuning voltage applied to the rf amplifiers. The control voltage is applied at E7 and routed to U1 which contains the oscillator tuning elements. Also contained in U1 is a temperature control circuit employed to enhance the oscillator stability by maintaining a constant temperature. Transistors Q10 and Q11 function as a current limiter and a switch to limit maximum heater current to approximately 200 mA and to hold the temperature to 60° Centigrade.

4-14. As the control voltage is varied, U.1 changes characteristics accordingly to shift the oscillator frequency. Inductor L13 and capacitor C43 are employed to establish the oscillator operating limits between 66.25 and 92.5 MHz . This output is taken from the collector of Q6 and coupled by buffer amplifier Q7 to doubler stage Q8. Tuning of the doubler stage is accomplished by the application of the tuning control voltage to diodes CR9, CR10, and CR11; diodes CR9 and CR11 control the frequency tuning and CR10 maintains the correct bandwidth. Inductors L16 and L17 are utilized to match the impedance between tuned stage and transistors Q8 and Q9. The 265 to 370 MHz output of the doubler stage is further amplified by tuned amplifier Q9. This stage is tuned in the same manner as the doubler and routes the local oscillator signal to mixer Q4.

4-15. CRYSTAL CONTROLLED OSCILLATOR. The crystal oscillator circuit is shown in figure 7-3 and housed in subassembly A2. The circuit consists of oscillator A2Q1, tripler A2Q2, and amplifier A2Q3.
$4-16$. When the crystal (XTAL) operating mode is selected, -15 V de is applied to P1-21 and routed to terminal A2E2 to energize the oscillator. The operating frequency of the oscillator is determined by the CR-52A/U or CR-65A/U (with oven) mounted in front panel receptacle J3. The crystal is electrically connected between the collector and base of A2Q1 and must be cut for operation between 33.125 and 46.25 MHz . Output from the oscillator is taken from the collector of Q1 and is applied to tuned doubler Q2. This stage is also voltage tuned in the same manner as the rf amplifier and other multiplier stages. Capacitors C10 and C14, and inductors L4 and L5 set the range of the multiplier, and diodes CR1 through CR14 are employed to tune the circuit; the bandwidth of the doubler is approximately 3 MHz .

4-17. From the doubler, the $66.25-92.5 \mathrm{MHz}$ signal is further amplified by Q3 and coupled through J2 to J7 on subassembly A1. The signal applied to A1J7 is then routed through the same multiplier circuit as the vfo signal and coupled to the mixer (Q4) at a frequency of 265 to 370 MHz .

4-18. EXTERNAL OSCLLATOR AND OSCILLATOR MONITOR. When it is desirable to use another receiver or a frequency synthesizer as the l-o source, both the voltage and crystal controlled oscillators are disabled. The external l-o signal is then applied to the receiver rear apron and coupled through P1-A3 and A1J6 to amplifier Q12. This signal must be between 66.25 and 92.5 MHz and at a minimum level of -13 dBm . Taken from the collector of Q12, the external 1-o signal is coupled to doubler Q8 for further application to the mixer.

4-19. For monitoring purposes, the l-o signal (crystal, VCO, or external) that appears at the input of doubler Q8 is coupled to amplifier Q15 which provides the drive for the l-o output at J8. The output impedance of J8 is set at 50 ohms for compatibility with interface requirements.

4-20. FIRST MIXER AND IF AMPLIFIER (figure 7-2)

4-21. Mixer Q4 accepts the rf input from the rf amplifier and the 1 -o input from the oscillator multiplier chain. The two signals are then heterodyned to produce a 50 MHz intermediate frequency (i-f). This signal is further amplified by Q5 and applied to the tuner i-f output at P1-A1 for application to the receiver i-f circuitry. An output impedance of 50 ohms is established by the collector circuit of Q5 for interface purposes.

4-22. A3, DC AMPLIFIER

4-23. The dc amplifier is shown in figure 7-4 and is composed of integrated circuits U1 and U2, and transistor amplifiers Q1 through Q4. The complete module functions as an operational amplifier having a gain of 3 to obtain the +3 to +15 V control voltage for application to the tuning elements in the rf amplifiers, voltage controlled oscillator and oscillator multipliers. Input to the amplifier is derived from either the internal tuning potentiometer (R1), or an external source such as a remote tuning panel, depending on the position of S1. This voltage must be between 0 V dc and -6 V dc and is applied to E1. The output voltage is taken from E5 and is between +3 and +15 V depending on the input level. Feedback is maintained between the output and input to obtain the required stability and shaping. Potentiometers R3 and R6 are provided as the balance adjustments in order to maintain a zero volt dc output with a zero volt input. Potentiometer R11, in the feedback loop, is the scaling adjustment and is employed to set the output to +15 V with a -5 V input. Capacitors $\mathrm{C} 4, \mathrm{C} 6$, and C 7 are utilized to obtain the required voltage shape. Diodes CR1 and CR2 are field-effect current regulator devices which provide a constant current that is essentially independent of voltage. They are used as constant current sources for the associated elements in the amplifier circuit.

SECTION V
MAINT ENANCE

5-1. GENERAL

5-2. This section provides maintenance information for the Model 1112-VT(A) RF Tuner. Included herein are: a list of required test equipment, a list of special tools required, preventive maintenance instructions, and corrective maintenance information.

5-3. TEST EQUIPMENT

5-4. The test equipment required to test, troubleshoot, and align the $1112-\mathrm{VT}(\mathrm{A})$ is listed in table 5-1. Equipments listed are those recommended by Microdyne Corporation and direct equivalents may be substituted.

Table 5-1. Required Test Equipment

Signal Generator	HP608
Oscilloscope Dual Channel	HP1200A
Sweep Generator	Texscan VS-50
RF Detector	HP8471A
Noise Figure Meter	HP342B
(50 MHz Input)	
VHF Noise Source	HP343A
Auto Voltmeter	HP414A
Frequency Counter	HP5245L
Counter Converter	HP5253B
Broadband Sampling Voltmeter	HP3406A
RF Amplifier	Boonton 230A
BNC to Sealectro Adapters (4)	Sealectro 50-077-6801
Clip-On Milliammeter	HP428B
Digital Voltmeter	Fluke 8300A

5-5. SPECIAL CABLES

5-6. In order to test, troubleshoot, and align the rf tuner, the unit is to be connected to the receiver base chassis with special extender cables. These cables are available from Microdyne under the following part numbers: 200-452 and 200-453. These cables may also be fabricated using the following procedure:
a. Obtain the following material:

1. RG-174/U cable - length should be sufficient to make three equal-length cables approximately three feet long.
2. RG-223/U cable, approximately three feet long.
3. One roll of \#24 insulated multistrand wire.
4. One set Cannon DCM-25W3P and DCM-25W3S connectors with coaxial inserts.
5. One Gremar 11749-1 and one Gremar 16908-1 connector.
b. Cut the \#24 wire into twenty-two three-foot lengths and make connections between corresponding pins of the two Cannon connectors.
c. Connect the RG-174/U cable between corresponding coaxial inserts in the two Cannon connectors (A1-A2-A3). These inserts should not be permanently affixed to connectors since they must be removed for alignment. This completes fabrication of the i-f/power cable.
d. Connect the Gremar 11749-1 and 16908-1 connectors to the length of RG-223/U cable. This completes fabrication of the rf cable.

5-7. PERFORMANCE TESTS

5-8. The following tests should be performed at six-month intervals to insure proper operation of the tuner. Any discrepancies noted should be corrected immediately.

5-9. NOISE FIGURE

5-10. The procedure for measuring the noise figure is given in paragraph 5-38.
5-11. GAIN
$5-12$. The procedure for checking the tuner gain is given in paragraph 5-39.

5-13. LOCAL OSCILLATOR FREQUENCY

5-14. To check the local oscillator frequency, proceed as follows:
a. Connect the frequency counter (HP5245L/HP5253B) to the receiver first 1-o monitor output.
b. Set the tuner 1ST LO MODE switch to VFO.
c. Measure and note the frequency at the low, middle, and high points in the tuning band.
d. Multiply each frequency by 4 and subtract 50 MHz ; the calculated frequency should be within $\pm 1 \%$ of the dial.
e. Disconnect all test equipment.

5-15. PERIODIC ADJUSTMENTS
$5-16$. No periodic adjustments are required during normal operation of the $1112-\mathrm{VT}(\mathrm{A})$.

5-17. PREVENTIVE MAINTENANCE

5-18. Preventive maintenance requirements for the tuner consist of the performance test described in paragraph 5-7 and a visual inspection checking for:
a. Loose hardware - tighten immediately to prevent the occurrence of short circuits.
b. Loose or broken connectors - repair or replace as required.
c. Resistors for burning or discoloration - replace after determining the cause of overheating.
d. Wires for cuts, cracks, or frayed insulation - repair by replacing or taping.

5-19. Lubrication is not required for any tuner component.

5-20. CORRECTIVE MAINTENANCE

5-21. Corrective maintenance consists of troubleshooting, repair, and alignment. Information pertaining to these subjects is given in paragraphs 5-22, 5-25, and 5-28.

5-22. TROUBLESHOOTING

5-23. To properly troubleshoot the tuner, connect it to the parent unit using the test cables described in paragraph 5-5.

5-24. The first step in troubleshooting the tuner is to apply a test signal to the tuner noting which outputs are absent, the effects that controls have and do not have, and other indications on the parent unit. Reference should then be made to the schematic diagram and block diagram to determine which stages are common to the problem. For example, if there is no i-f output in vfo operation, but the unit functions normally in crystal operation, the fault probably lies in the vfo or associated buffer. A voltage chart is shown in table 5-2 to aid in locating the defective component.

Table 5-2. Static DC Voltages

$\underline{\text { Device }}$	$\underline{\mathrm{E}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$	$\underline{\mathrm{S}}$	$\underline{\mathrm{G}}$	$\underline{\mathrm{D}}$
Q1	-10.3	-9.6	+0.9			
Q2				+0.9	-0.91	+14.8
Q3	-7.9	-7.2	+14.6		0	+14.8
Q4	-12.2	-11.4	-0.14			
Q5	-4.6	-4	-2			
Q6	-8.6	-7.9	-1.3			
Q7	+6.5	+7.1	+14.9			
Q8						

Table 5-2, continued

Device	\underline{E}	\underline{B}	$\underline{\mathrm{C}}$	$\underline{\mathrm{S}}$	$\underline{\mathrm{G}}$	$\underline{\mathrm{D}}$
Q9	+6.1	+6.8	+14.7			
Q10	-13	-13.7	-14.1			
Q11	-15	-14.75	-1.3			
Q15	-8.1	-7.3	-1.3			
A2Q1 (crystal box)	-4	-3.5	-0.5	(XTAL mode)		
A2Q2 (crystal box)	-6.8	-4.2	0	(XTAL mode)		
A2Q3 (crystal box)	-7.2	-6.6	-0.7	(XTAL mode)		
1. All voltages were measured with a Fluke 8300A digital voltmeter.						
2. Voltages may vary up to $\pm 10 \%$ between units.						
3. Except for Q1, Q2, and Q3 on the crystal subassembly, all voltages						
are to be taken with the 1ST LO MODE switch in the VFO position.						

Table 5-3. DC Amplifier DC Voltages

Test Point	Voltage		
E10	-2.56		
E11	-0.001		
E12	-0.991		
E13	-5. 05		
Device	E	B	C
Q1	-5. 6	-5.4	+ 8.6
Q2	+7. 6	+8.6	+70 *
Q3	+7. 67	+7.6	+70 *
Q4	+7. 62	+7.67	+ 8.6*
	.55 V de vel is e powe	front dent o pply an	

NOTE
After a malfunction has been located and repaired, it may be necessary to realign the circuitry in that section. Critical circuitry generally contained in rf tuners requires utmost care in this procedure, and alignment should only be attempted with the use of the proper test equipment. Since only slight adjustments are necessary after a component has been replaced, it is recommended that the alignment procedure be followed very carefully. Only realign in the area of repair; i.e., i-f amplifier, vfo, etc.

5-25. REPAIR

$5-26$. Once the defective component has been located, it should be replaced with an identical component as referenced in Section VI for best results. Since the majority of components are soldered in place, extreme care must be exercised when handling a soldering iron to prevent damaging adjacent circuitry. Heat sinks should also be employed to prevent thermal damage.

5-27. After a component has been replaced, thoroughly check the area in which work was done for excess solder and dirt. The joint itself should be cleaned and checked for permanent connection.

5-28. ALIGNMENT

5-29. After completing all repairs, the unit must be tested and, if necessary, realigned prior to operation. Normally, only the stage or stages in which work was done will require alignment. Other stages may be checked per paragraph 5-7 or by making measurements following the alignment procedure.

5-30. SETUP. To prepare the tuner for realignment, remove the bottom cover and connect the unit to the receiver with the test cables noted in paragraph 5-5. Set the receiver for local operation and allow sufficient warmup. No warmup is required when performing paragraph 5-31 since measurement must be made during the warmup period.

5-31. DC AMPLIFIER. The following procedure should be incorporated only when the de amplifier has been repaired.
a. Connect the HP428B clip-on milliammeter to the -15 V line on the power and control cable.
b. Note the current at the time of power turn-on.
c. Observe that the current decreases by approximately 100 mA after five minutes due to the oven reaching normal temperatures.
d. Disconnect the milliammeter.
e. Set the TUNING control to 279 MHz . Connect the digital voltmeter to R3 and adjust R2 for -5.800 V dc. R2 is mounted on a bracket behind the front panel.
f. Set the TUNING control to 279 MHz and, using the digital voltmeter, measure the voltage between A3E1 and ground; it should be -2.475 V dc. If not, disengage the coupling between the tuning potentiometer (R1) and the shaft. Adjust R1 for -2.475 V dc and tighten the coupling.
g. Connect the digital voltmeter between A3E1 and A3E10.
h. Adjust A3R3 for 0.00 V de.
i. Move the digital voltmeter between A3E12 and A3E11.
j. Adjust A3R6 for 0.00 V dc.
k. Measure and note the voltage at A3E1. Connect the voltmeter between A3E5A or E5B and ground.

1. Adjust A3R11 for four times the level noted in step k .
m. Repeat steps e through 1 as often as necessary.
n. Disconnect all test equipment.

5-32. VFO ALIGNMENT. To align the vfo, proceed as follows:
a. Set the tuner 1ST LO MODE switch to VFO (local control).
b. Install the bottom cover.
c. Connect the frequency counter to P1-A1 on the tuner rear panel.
d. Set the dial to 320 MHz and adjust C 43 for a 92.5 MHz counter indication.
e. Set the dial to 215 MHz and adjust L 13 for a 66.25 MHz counter indication.
f. Repeat steps d and e as often as necessary to obtain the required frequencies.
g. Set the TUNING control to 265 MHz and observe that the counter indicates $78.75 \mathrm{MHz}(\pm 100 \mathrm{kHz})$. If other than $78.75 \mathrm{MHz}(\pm 100 \mathrm{kHz})$, adjust A3R11 to bring the frequency in tolerance.
h. Repeat steps d, e, f, and g.
i. Check the frequency across the band; the measured frequency should be within $\pm 250 \mathrm{kHz}$ of that required at any given point in the tuning range.

5-33. LO MULTIPLIERS ALIGNMENT. To align the local oscillator multipliers, proceed as follows:
a. Connect the HP3406A sampling voltmeter, terminated in 50 ohms, to A1J4. Set the 1ST LO MODE switch to VFO.
b. Set the dial to 320 MHz and adjust C53, C58, C66, and C74 for a peak voltmeter indication; this should occur at approximately -10 dBm .
c. Set the dial to 215 MHz and adjust L16, L17, L18, and L20 for a peak voltmeter indication of approximately -10 dBm . Use a non-metallic tuning tool for these adjustments.
d. Repeat steps b and c until maximum voltage is obtained at 215 and 320 MHz .
e. Disconnect all test equipment.

5-34. CRYSTAL OSCILLATOR ALIGNMENT. To align the crystal oscillator, proceed as follows:
a. Set the tuner 1ST LO MODE switch to EXT.
b. Disconnect the cable from A1J7.
c. Connect the HP8471A detector to this cable through a 0.001 uF capacitor.
d. Connect the detector output to the video input of the Texscan VS- 50 sweep generator.
e. Connect the VS-50 horizontal and vertical outputs to the respective oscilloscope inputs.
f. Connect the sweep generator rf output to J1 on the crystal box (subassembly A2).
g. Set the generator for a 92.5 MHz output at -10 dBm .
h. Set the tuner dial to 320 MHz and adjust C10 and C13 on the crystal subassembly for a double-tuned response centered at 92.5 MHz .
i. Set the tuning dial to 215 MHz and the sweep generator to 66.25 MHz .
j. Adjust L4 and L5 for a double-tuned response centered at 66.25 MHz .
k. Repeat the procedure as often as necessary to obtain optimum tracking.

1. Disconnect the test equipment and reconnect the cable to A1J7.

5-35. RF AMPLIFIER ALIGNMENT. To align the rf amplifier, proceed as follows:
a. Connect the rf output of the Texscan VS-50 sweep generator to J1.
b. Connect the HP8471A rf detector to A1J2.
c. Connect the sweep generator horizontal output and the detector output to the horizontal and vertical inputs of the oscilloscope.
d. Set the sweep generator for a 320 MHz output at -30 dBm .
e. Set the tuner 1ST LO MODE switch to EXT and the TUNING control to 320 MHz . Adjust C7, C9, C18, and C21 for a double-tuned response centered at 320 MHz .
f. Set the signal generator and tuner to 215 MHz , and adjust L4, L5, L8, and L9 for a double-tuned response centered at 215 MHz .
g. Repeat steps d, e, and fas often as necessary to obtain the required tracking.
h. Disconnect all test equipment.

5-36. IF AMPLIFIER ALIGNMENT. To align the i-f amplifier, proceed as follows:
a. Set the TUNING control to 245 MHz and the 1 ST LO MODE switch to VFO.
b. Connect the Texscan VS-50 sweep generator rf output to A1J4.
c. Connect the HP8471A rf detector to P1-A3.
d. Connect the sweep generator horizontal output to the oscilloscope horizontal input and the detector output to the oscilloscope vertical input.
e. Set the sweep generator for a 50 MHz output at -10 dBm .
f. Adjust L10 and L11 for a double-tuned response centered at 50 MHz with a 3 dB bandwidth of approximately 6 MHz .
g. Disconnect all test equipment.

5-37. TESTS. After completing an alignment, the tuner should be tested prior to operational use. The tests required are given in the following paragraphs.

5-38. Noise Figure
a. Connect the HP343A noise source to the rf input J1.
b. Connect the i-f output at P1-A3 to the Boonton 230A amplifier input.
c. Connect the amplifier output to the noise figure meter 50 MHz input.
d. Set the tuner 1ST LO MODE switch to VFO and check the noise figure across the band; it should be 6.5 dB or less.
e. Set the tuner 1ST LO MODE switch to XTAL (local control) and check the noise figure for each available crystal; the noise figure should again be 6.5 dB or less.
f. Disconnect all test equipment.

5-39. Gain and AGC
a. Connect the HP608 signal generator to the rf input at J1.
b. Connect the HP3406A, terminated in 50 ohms, to the i-f output at P1-A1.
c. Set the HP608 for an output of 250 MHz at -40 dBm .
d. Set the tuner to 250 MHz . Use a frequency counter to accurately set the frequencies; the tuner first l-o output at P1-A1 will indicate 75 MHz when correctly tuned.
e. Set the receiver AGC TIME CONSTANT MSEC switch to MAN and adjust the MAN GAIN control for -0.00 V dc on the tuner age line.
f. Measure gain; it should be $20 \mathrm{dBm} \pm 3 \mathrm{~dB}$. If not, adjust the channel gain control R30 for a meter indication of $-16 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.
g. Set the MAN GAIN control for -5 V dc on the age line.
h. Adjust R20 for maximum gain reduction.
i. Disconnect all test equipment.

TOPSIDE SOLDER
QFEEDTHRU

Figure 5-1. DC Amplifier, Component Location

SECTION VI
REPLACEMENT PARTS LIST

6-1 GENERAL

6-2 This section contains the replacement parts list for the 1112-VT(A) RF Tuner and all subassemblies contained therein. Parts are listed alphanumerically by subassembly and provide the reference designator, description, manufacturer, and manufacturer's part number. Include all component information when ordering spare or replacement parts.

6-3 MAIN CHASSIS

Reference
 Designation

Description

A1
A2

A3 DC Amplifier, Microdyne 100-966; see paragraph 6-6 for breakdown listing
C1 Capacitor, ceramic, $220 \mathrm{pF} \pm 20 \%, 100 \mathrm{~V}$, Erie 8101-100-X5R-221M
J1 Connector, Gremar 16908-1
P1 Connector, Cannon DCM25W3P
P1-A1 Insert, Cannon DM53740-1
P1-A2 Insert, Cannon DM53740-1
P1-A3 Insert, Cannon DM53740-1
P2
thru Connector, Phelps Dodge UG1465/U
P7
R1 Resistor, variable, $10 \mathrm{~K} \Omega \pm 10 \%$, 2 w , Bourns 3501S-1-103
R2 Resistor, variable, 200 , $\frac{1}{4} \mathrm{w}$, Helitrim 78SR200BW
R3 Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1025
S1 Switch, with dress nut and blue cap, C\&K 7101
Z1 Not Assigned
Z2
thru
Z7
RF Chassis, Microdyne 101-110; see paragraph 6-4 for breakdown listing
Crystal Oscillator and Multiplier, Microdyne 101-109; see paragraph 6-5 for breakdown listing

Ferrite Bead, Fair Rite 2673000101

6-4 A1, RF CHASSIS

Reference

Designation

Description

C1
Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8101-100-COG-100J
C2 Capacitor, ceramic, $110 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100$-COG-111J

Replacement Parts List - A1, RF Chassis, continued

Reference
Designation

Description

C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
thru
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44

Capacitor, ceramic, $0.75 \mathrm{pF} \pm 5 \%$, Quality Components MC-0. 75 Capacitor, ceramic, $2.4 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-249B Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100V, Erie 8101-100-X5R-101M Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, feedthru, $47 \mathrm{pF} \pm 20 \%$, 1000 V , Erie $2482-001-\mathrm{X} 5 \mathrm{U}-470 \mathrm{M}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, ceramic, $4.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-479C
Capacitor, ceramic, $0.91 \mathrm{pF} \pm 5 \%$, Quality Components MC-0.91
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $4.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-479C
Capacitor, feedthru, $47 \mathrm{pF} \pm 20 \%$, 1000V, Erie $2482-001-\mathrm{X} 5 \mathrm{U}-470 \mathrm{M}$
Capacitor, ceramic, $91 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8111-100-COG-910J
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $43 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-430J
Capacitor, ceramic, $68 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-680J
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, ceramic, $33 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-330J
Capacitor, ceramic, $1.5 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-159B
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $430 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-431J
Capacitor, variable, 0.8-8.5 pF, LRC 682237
Capacitor, ceramic, $68 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-680J

Replacement Parts List - A1, RF Chassis, continued

Reference
Designation

Description

C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
thru
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66
C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86

Capacitor, variable, $27 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8121-100$-COG-270J Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-100J Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8111-100-COG-200J Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $30 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-300J
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-100J
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $47 \mathrm{pF} \pm 20 \%$, 100V, Erie $8101-100-\mathrm{X} 5 \mathrm{R}-470 \mathrm{M}$
Capacitor, ceramic, $4.3 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-439C
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $47 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100$-X5R-470M
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F}$, Allen Bradley FA5C-102W
Capacitor, ceramic, $47 \mathrm{pF} \pm 5 \%$, 100V, Erie 8131-100-COG-470J
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
Capacitor, ceramic, $6.8 \mathrm{pF} \pm 1 \%$, 100V, Erie 8101-100-COGO-689B
Capacitor, ceramic, $43 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8121-100-\mathrm{COG}-430 \mathrm{~J}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $9.1 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-919C
Capacitor, ceramic, $9.1 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-919C
Capacitor, ceramic, $4.3 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-439C
Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8111-100$-COG-200J
Capacitor, ceramic, $3 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-309B
Capacitor, ceramic, $0.75 \mathrm{pF} \pm 5 \%$, Quality Components MC-0. 75
Capacitor, tantalum, $330 \mu \mathrm{~F}, 6 \mathrm{~V}$, Kemet K330E6, T362D337M006AS
Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8111-100-\mathrm{COG}-200 \mathrm{~J}$
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000 V , Erie 2482-001-W5T-102P
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M

Replacement Parts List - A1, RF Chassis, continued

Reference
 Designation

Description

C87
C88
C89

CR1
thru
CR4
CR5
CR6
CR7
CR8
CR9
thru
CR14
CR15

E1
thru Termination, feedthru, teflon, Sealectro FT-SM-1
E4
E5
E6
E7
thru
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
thru
E24
E25
E26
E27
Capacitor, ceramic, $220 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-221 \mathrm{M}$
Capacitor, ceramic, $220 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-221 \mathrm{M}$
Capacitor, ceramic, $220 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-221 \mathrm{M}$

Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-2
Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-2

Diode, Microdyne 301-476-1
Diode, Motorola 1N4743A

Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, feedthru, Sealectro FT-SM-1
Termination, standoff, Sealectro ST-SM-1

Replacement Parts List - A1, RF Chassis, continued

Reference Designation	Description
J1	
thru	Connector, Phelps Dodge UG-1619/U
J8	
L1	Inductor, variable, Microdyne 201-129
L2	Inductor, variable, Microdyne 201-130
L3	Inductor, variable, Microdyne 201-129
L4	Inductor, variable, Microdyne 201-298
L5	Inductor, variable, Microdyne 201-298
L6	Inductor, $0.22 \mu \mathrm{H}$, Jeffers 4416-5K
L7	Inductor, $0.15 \mu \mathrm{H}$, Jeffers 4415-1M
L8	Inductor, variable, Microdyne 201-299
L9	Inductor, variable, Mícrodyne 201-298
L10	Inductor, variable, Cambion 1507-5
L11	Inductor, variable, Cambion 1507-5
L12	Inductor, fixed, Microdyne 200-720
L13	Inductor, variable, LRC 681221
L14	Inductor, $0.47 \mu \mathrm{H}$, Jeffers 4425-2M
L15	Inductor, $4.7 \mu \mathrm{H}$, Jeffers $4425-14 \mathrm{~K}$
L16	Inductor, variable, Microdyne 201-300
L17	Inductor, variable, Microdyne 201-300
L18	Inductor, variable, Microdyne 201-301
L19	Inductor, $0.015 \mu \mathrm{H}$, Jeffers 4415-1M
L20	Inductor, variable, Microdyne 201-301
L21	Inductor, $5.6 \mu \mathrm{H}$, Jeffers 4435-1K
L22	Inductor, $0.68 \mu \mathrm{H}$, Jeffers 4425-4K
L23	Inductor, fixed, Microdyne 201-302
L24	Inductor, $5.6 \mu \mathrm{H}$, Jeffers $4435-1 \mathrm{~K}$
P1	Not Assigned
P2	Connector, Phelps Dodge UG-1465/U
P3	Connector, Phelps Dodge UG-1465/U
Q1	Transistor, RCA 2N6389
Q2	Transistor, Union Carbide 2N4416
Q3	Transistor, Union Carbide 2N4416
Q4	
thru	Transistor, RCA 2N5179
Q9	
Q10	Transistor, Sprague 2N4413
Q11	Transistor, RCA 2N5179
Q12	Transistor, RCA 2N5179

Replacement Parts List - A1, RF Chassis, continued
Reference
Designation

Description

Q13	Not Assigned
Q14	Not Assigned
Q15	Transistor, RCA 2N5179

R1 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1045

R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38

Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $100 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1015
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $200 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2 2045
Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1035
Resistor, fixed composition, $2.7 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2725
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1 005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB 4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $1.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1325
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5125
Resistor, variable, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley WA2L040S103UC
Resistor, fixed composition, $4.7 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4725
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $1.2 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1225
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5 105
Resistor, fixed composition, $20 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2005
Resistor, fixed composition, $680 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6815
Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 045
Resistor, variable, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley WA2L040S103UC
Resistor, fixed composition, $20 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $1.8 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1825
Resistor, fixed composition, $910 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB9115
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $270 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2715
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5115
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5 105

Replacement Parts List - A1, RF Chassis, continued

Reference
Designation

Description

R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80

Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB4325
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5115
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $620 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $16 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1635
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1025
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 025
Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $15 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1535
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 025
Resistor, fixed composition, $1.2 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 225
Resistor, fixed composition, $18 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1805
Resistor, fixed composition, $100 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1015
Resistor, fixed composition, $200 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2015
Resistor, fixed composition, $18 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1805
Resistor, fixed composition, $18 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1805
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $100 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1015
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5105
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 045
Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1035
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $680 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6815
Not Assigned
Resistor, fixed composition, $620 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1005

Replacement Parts List - A1, RF Chassis, continued
Reference

Description

Designation
R81 Resistor, fixed composition, $510 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5115
R82 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
R83 Resistor, fixed composition, $750 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
R84 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{~W}$, Allen Bradley CB4325
U1 Oscillator Oven, Microdyne 301-053
XQ1
thru Socket, transistor, Augat 8060-1G8
XQ11
XQ12
thru Not Assigned
XQ14
XQ15 Socket, transistor, Augat 8060-1G8
Z1
thru
Ferrite Bead, Fair Rite 2673000101
Z3

6-5 A2, CRYSTAL OSCLLATOR AND MULTIPLIER
Reference
Designation

Description

C1 Capacitor, ceramic, $36 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-360J
C2
Capacitor, ceramic, $24 \mathrm{pF} \pm 5 \%$, 100V, Erie 8111-100-COG-240J
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, ceramic, $82 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8131-100-\mathrm{COG}-820 \mathrm{~J}$
Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8111-100-COG-200J
Capacitor, ceramic, $1.0 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-109B
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, $0.75 \mathrm{pF} \pm 5 \%$, Quality Components MC-0. 75
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P

Replacement Parts List - A2, Crystal Oscillator \& Multiplier, continued

Reference Designation	Description
C17	Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
C18	Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100V, Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
C19	Capacitor, ceramic, $33 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-330J
C20	Capacitor, ceramic, $68 \mathrm{pF} \pm 5 \%$, 100V, Erie 8131-100-COG-680J
C21	Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
C22	Capacitor, feedthru, $0.001 \mu \mathrm{~F} \pm 20 \%$, 1000V, Erie 2482-001-W5T-102P
C23	Capacitor, ceramic, $3 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-309B
C24	Capacitor, ceramic, $3 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-309B
C 25 C 26	Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-100-651-334M Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-100-651-334 \mathrm{M}$
CR1	
thru	Diode, Microdyne 301-476-1
CR4	
E1	
thru	Termination, standoff, teflon, Sealectro ST-SM-1
E3	
J1	Connector, Bulkhead Jack, Phelps Dodge UG-1619/U
J2	Connector, Bulkhead Jack, Phelps Dodge UG-1619/U
J3	Connector, Cannon DEM-9S
L1	Inductor, $0.47 \mu \mathrm{H}$, Jeffers 4425-2M
L2	Inductor, $0.22 \mu \mathrm{H}$, Jeffers 4415-2M
L3	Inductor, $150.0 \mu \mathrm{H}$, Jeffers $4445-4 \mathrm{~K}$
L4	Inductor, variable, Microdyne 201-303
L5	Inductor, variable, Microdyne 201-303
L6	Inductor, fixed, Microdyne 201-302
L7	Inductor, $5.6 \mu \mathrm{H}$, Jeffers $4435-1 \mathrm{~K}$
Q1	Transistor, RCA 2N5179
Q2	Transistor, RCA 2N3478
Q3	Transistor, RCA 2N5179
R1	Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB4325
R2	Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
R3	Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
R4	Resistor, fixed composition, $24 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2405
R5	Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
R6	Resistor, fixed composition, $3.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{~W}$, Allen Bradley CB3325
R7	Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB7515

Replacement Parts List - A2, Crystal Oscillator \& Multiplier, continued

Reference
Designation
R8 Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB1005
R9 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
R10 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
R11
R12
R13
R14
XQ1 Socket, Transistor, Augat 8060-1G8
XQ2
XQ3

Description

Resistor, fixed composition, $1.5 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1525
Resistor, fixed composition, $2 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2025
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5115
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105

Socket, Transistor, Augat 8060-1G8
Socket, Transistor, Augat 8060-1G8

6-6 A3, DC AMPLIFIER

Reference
Designation

Description

C1 Capacitor, tantalum, $47 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$, Kemet K47E20, T362C476M020AS
C2
C3
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$
Capacitor, tantalum, $47 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$, Kemet K47E20, T362C476M020AS
C4
Capacitor, ceramic, $110 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-111J
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$
Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8121-100-651-334 \mathrm{M}$
Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8121-100-651-334 \mathrm{M}$
Capacitor, tantalum, $47 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$, Kemet K47E20, T362C476M020AS
*CR1 Diode, Motorola 1N5285
*CR2 Diode, Motorola 1N5285

E1
thru Termination, AMP 61067-1
E13
Q1
thru Transistor, silicon, Motorola 2N4410
Q3
Q4 Transistor, silicon, Sprague 2N4384

* 1N5286 may be used in place of 1N5285 (Motorola)

Replacement Parts List - A3, DC Amplifier, continued
Reference
Designation

Description

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14

U1
U2

Resistor, fixed composition, $5.6 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5625
Resistor, fixed composition, $1.5 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1525
Potentiometer, $10 \mathrm{~K} \Omega$, Bourns 3329H-1-103
Resistor, film, $10 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55E1002F
Resistor, fixed composition, $8.2 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{~W}$, Allen Bradley CB8225
Potentiometer, $10 \mathrm{~K} \Omega$, Bourns $3329 \mathrm{H}-1-103$
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $47 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB 4735
Resistor, film, $25.5 \mathrm{~K} \Omega \pm 1 \%$, $1 / 8 \mathrm{w}$, RN55E 2552 F
Potentiometer, $25 \mathrm{~K} \Omega$, Bourns 89 WR 25 K
Resistor, fixed composition, $91 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB9135
Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $620 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Operational Amplifier, Analog Devices AD502LH
Operational Amplifier, Analog Devices AD502LH

SECTION VII
 MAINTENANCE DIAGRAMS

This section contains the schematic-wiring diagrams for the 1112-VT(A) RF Tuner. Unless otherwise specified, the following information applies to each schematic diagram:
a. Capacitor values greater than 1.0 are in picofarads.
b. Capacitor values less than 1.0 are in microfarads.
c. Inductor values are in microhenrys.
d. Resistor values are in ohms: $\mathrm{k}=\mathrm{x} \mathrm{1000;} \mathrm{~m}=\mathrm{x} 1,000,000$.
e. * denotes selected value.
f. \sim ferrite bead.

Figure 7-4. A3, DC Amplifier, Schematic Diagram

